Answer
$ Answer\:in \:the\:step-by-step.$
Work Step by Step
$Givem\:the\:2x2\:matrix\:\begin{bmatrix}a&b\\ c&d\end{bmatrix}\\a)\begin{bmatrix}a-c&b-d\\ c&d\end{bmatrix}-R_2+R_1\rightarrow R_1\\b)\:\begin{bmatrix}a-c&b-d\\ \:a&b\end{bmatrix}R_1+R_2\rightarrow R_2\\c)\begin{bmatrix}-c&-d\\ a&b\end{bmatrix}-R_2+R_1\rightarrow R_1\\d)\begin{bmatrix}c&d\\ a&b\end{bmatrix}-R_1\rightarrow R_1\\In\:this\:new\:matrix,\:the\:original\:matrix's\:rows\:were\:switched.\:In\:the\:row\:operations\:performed\:from\:part\:a\:through\:d,\:part\:a\:is\:redundant.\:Therefore,\:we\:can\:just\:use\:the\:b\:through\:d\:operations\:to\:switch\:the\:rows.$