Introductory Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-805-X
ISBN 13: 978-0-13417-805-9

Chapter 1 - Section 1.2 - Fractions in Algebra - Exercise Set - Page 31: 137

Answer

The product of two or more fractions is the product of their numerators divided by the product of their denominators. $\displaystyle \frac{a}{b}\cdot\frac{c}{d}=\frac{a\cdot c}{b\cdot d}$

Work Step by Step

The product of two or more fractions is the product of their numerators divided by the product of their denominators. $\displaystyle \frac{a}{b}\cdot\frac{c}{d}=\frac{a\cdot c}{b\cdot d}$ Also, you can divide numerators and denominators by common factors before performing multiplication. Example $\displaystyle \frac{2}{3}\cdot\frac{4}{5}=\frac{2\cdot 4}{3\cdot 5}=\frac{8}{15}$ Example (reduce before multiplying) $\displaystyle \frac{15}{17}\cdot\frac{51}{80}=\frac{3\times(5)}{[17]}\cdot\frac{3\times[17]}{(5)\times 16}=\frac{3 }{1}\cdot\frac{3 }{ 16}$ $=\dfrac{3\times 3}{1\times 16}=\dfrac{9}{16}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.