Linear Algebra and Its Applications, 4th Edition

Published by Brooks Cole
ISBN 10: 0030105676
ISBN 13: 978-0-03010-567-8

Chapter 1 - Section 1.4 - Matrix Notation and Matrix Multiplication - Problem Set - Page 26: 1

Answer

See the explanation

Work Step by Step

Let's compute each product separately: 1. **Product of Matrices (1)**: \[ \begin{bmatrix} 4 & 0 & 1 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \] To compute this product, we take the dot product of each row of the first matrix with the column vector. For the first row: \[ \begin{bmatrix} 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = (4 \times 3) + (0 \times 4) + (1 \times 5) = 12 + 0 + 5 = 17 \] For the second row: \[ \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = (0 \times 3) + (1 \times 4) + (0 \times 5) = 0 + 4 + 0 = 4 \] For the third row: \[ \begin{bmatrix} 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = (4 \times 3) + (0 \times 4) + (1 \times 5) = 12 + 0 + 5 = 17 \] So, the resulting vector is: \[ \begin{bmatrix} 17 \\ 4 \\ 17 \end{bmatrix} \] 2. **Product of Matrices (2)**: \[ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix} \] Since the first matrix is the identity matrix, the resulting vector is just the same as the given column vector: \[ \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix} \] 3. **Product of Column Vectors**: \[ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \] Graphically, when we multiply (2,1) by (0,3), it means scaling the vector (2,1) by the scalar 0 and 3, respectively. When you scale by 0, you end up with the zero vector (0,0). When you scale by 3, you triple the length of the vector in the direction of (0,3), ending up with (0,9). 4. **Product of Matrices (3)**: \[ \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \] \[ \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 + 0 \cdot 1 \\ 1 \cdot 1 + 3 \cdot 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \] So, the resulting vector is: \[ \begin{bmatrix} 2 \\ 4 \end{bmatrix} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.