Linear Algebra and Its Applications, 4th Edition

Published by Brooks Cole
ISBN 10: 0030105676
ISBN 13: 978-0-03010-567-8

Chapter 1 - Section 1.4 - Matrix Notation and Matrix Multiplication - Problem Set - Page 27: 10

Answer

(a) True (b) False (c) True (d) False

Work Step by Step

$(a) (AB)_{i1} = \sum_{k} A_{ik}B_{k1}$ $= \sum_{k} A_{ik}B_{k3}$ $= (AB)_{i3}$ $(b) \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & -1\\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1\\ 1 & 2 & 0\\ 1 & 1 & 1 \end{bmatrix}$ $(c) (AB)_{1j} = \sum_{k} A_{1k}B_{kj}$ $= \sum_{k} A_{3k}B_{kj}$ $= (AB)_{3j}$ $(d) \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -1 & 1 \end{bmatrix}$ $ \begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ -1 & 0 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.