Linear Algebra and Its Applications, 4th Edition

Published by Brooks Cole
ISBN 10: 0030105676
ISBN 13: 978-0-03010-567-8

Chapter 1 - Section 1.4 - Matrix Notation and Matrix Multiplication - Problem Set - Page 27: 14

Answer

So, the columns of \( AE \) are: - Column 1: \( \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \) - Column 2: \( \begin{bmatrix} a_{11} + 7a_{22} \\ a_{12} + a_{22} \end{bmatrix} \) This describes the rows of \( EA \) and the columns of \( AE \) in terms of the elements of matrix \( A \).

Work Step by Step

To describe the rows of \( EA \) and the columns of \( AE \), we need to perform matrix multiplication of matrices \( E \) and \( A \). Given that: \[ E = \begin{bmatrix} 1 & 7 \\ 0 & 1 \end{bmatrix} \] And suppose \( A \) is a \( 2 \times n \) matrix (the number of columns is not specified). Let's denote \( A \) as: \[ A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix} \] Now, let's compute \( EA \) and \( AE \): 1. \( EA \): \[ EA = \begin{bmatrix} 1 & 7 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix} \] For the first row of \( EA \), we have: \[ \begin{bmatrix} 1 & 7 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} = \begin{bmatrix} 1 \cdot a_{11} + 7 \cdot a_{21} \end{bmatrix} \] For the second row of \( EA \), we have: \[ \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} = \begin{bmatrix} 0 \cdot a_{11} + 1 \cdot a_{21} \end{bmatrix} \] So, the rows of \( EA \) are: - Row 1: \( \begin{bmatrix} a_{11} + 7a_{21} \end{bmatrix} \) - Row 2: \( \begin{bmatrix} a_{21} \end{bmatrix} \) 2. \( AE \): \[ AE = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix} \begin{bmatrix} 1 & 7 \\ 0 & 1 \end{bmatrix} \] For the first column of \( AE \), we have: \[ \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a_{11} \cdot 1 \\ a_{21} \cdot 1 \end{bmatrix} \] For the second column of \( AE \), we have: \[ \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} \begin{bmatrix} 7 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{12} + 7a_{22} \\ a_{12} + a_{22} \end{bmatrix} \] So, the columns of \( AE \) are: - Column 1: \( \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \) - Column 2: \( \begin{bmatrix} a_{11} + 7a_{22} \\ a_{12} + a_{22} \end{bmatrix} \) This describes the rows of \( EA \) and the columns of \( AE \) in terms of the elements of matrix \( A \).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.