Linear Algebra and Its Applications, 4th Edition

Published by Brooks Cole
ISBN 10: 0030105676
ISBN 13: 978-0-03010-567-8

Chapter 1 - Section 1.4 - Matrix Notation and Matrix Multiplication - Problem Set - Page 27: 13

Answer

$(a) A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $(b) B = \begin{bmatrix} 2 & 4 \\ -1 & -2\end{bmatrix}$ $(c) C= \begin{bmatrix} 0 & -1 \\ 1 & 0\end{bmatrix} ; D = \begin{bmatrix} 1 & 1 \\ 1 & -1\end{bmatrix}$ $(d) E = \begin{bmatrix} 2 & 1 \\ -2 & -1\end{bmatrix} ; F = \begin{bmatrix} 1 & -1 \\ -2 & 2\end{bmatrix}$

Work Step by Step

$(a) A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $ A^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I$ $(b) B = \begin{bmatrix} 2 & 4 \\ -1 & -2\end{bmatrix}$ $B^2 = \begin{bmatrix} 2 & 4 \\ -1 & -2\end{bmatrix}\begin{bmatrix} 2 & 4 \\ -1 & -2\end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0\end{bmatrix} = 0$ $(c) C= \begin{bmatrix} 0 & -1 \\ 1 & 0\end{bmatrix} ; D = \begin{bmatrix} 1 & 1 \\ 1 & -1\end{bmatrix}$ $CD = \begin{bmatrix} 0 & -1 \\ 1 & 0\end{bmatrix}\begin{bmatrix} 1 & 1 \\ 1 & -1\end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 1\end{bmatrix}$ $DC = \begin{bmatrix} 1 & 1 \\ 1 & -1\end{bmatrix}\begin{bmatrix} 0 & -1 \\ 1 & 0\end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & -1\end{bmatrix}$ $\therefore CD = -DC$ $(d) E = \begin{bmatrix} 2 & 1 \\ -2 & -1\end{bmatrix} ; F = \begin{bmatrix} 1 & -1 \\ -2 & 2\end{bmatrix}$ $EF = \begin{bmatrix} 2 & 1 \\ -2 & -1\end{bmatrix}\begin{bmatrix} 1 & -1 \\ -2 & 2\end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0\end{bmatrix} = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.