Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.4 Exercises - Page 41: 14

Answer

u is not in the plane spanned by the columns of A.

Work Step by Step

We check whether $\mathrm{A}\mathrm{x}=\mathrm{u}$ has a solution. If it does, then $\mathrm{u}$ is a linear combination of the columns of A. If so, then u belongs to the plane spanned by the columns of A. Reduce the augmented matrix $[\mathrm{A}\ \mathrm{x}]$ $\left[\begin{array}{llll} 5 & 8 & 7 & 2\\ 0 & 1 & -1 & -3\\ 1 & 3 & 0 & 2 \end{array}\right]\left(\begin{array}{l} \mathrm{r}_{1}\leftrightarrow \mathrm{r}_{3}.\\ .\\ . \end{array}\right)\sim\left[\begin{array}{llll} 1 & 3 & 0 & 2\\ 0 & 1 & -1 & -3\\ 5 & 8 & 7 & 2 \end{array}\right]\left(\begin{array}{l} .\\ .\\ -5\mathrm{r}_{1}. \end{array}\right)\sim$ $\sim\left[\begin{array}{llll} 1 & 3 & 0 & 2\\ 0 & 1 & -1 & -3\\ 0 & -7 & 7 & -8 \end{array}\right]\left(\begin{array}{l} .\\ .\\ +7\mathrm{r}_{2}. \end{array}\right)\sim\left[\begin{array}{llll} 1 & 3 & 0 & 2\\ 0 & 1 & -1 & -3\\ 0 & 0 & 0 & -29 \end{array}\right]$ The last row represents the equation 0=-29, so the system is inconsistent. u is not in the plane spanned by the columns of A.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.