Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.4 Exercises - Page 41: 16

Answer

$\mathrm{A}\mathrm{x}=\mathrm{b}$ does not have a solution for all $\mathrm{b}\in \mathbb{R}^{3}$ $\mathrm{A}\mathrm{x}=\mathrm{b}$ has solutions when $\mathrm{b} =(\mathrm{b}_{1},\mathrm{b}_{2},\mathrm{b}_{3})$ such that $\mathrm{b}_{1}+2\mathrm{b}_{2}+\mathrm{b}_{3}=0$

Work Step by Step

Reduce the augmented matrix $[\mathrm{A}\ \mathrm{x}]$ $\left[\begin{array}{llll} 1 & -3 & -4 & b_{1}\\ -3 & 2 & 6 & b_{2}\\ 5 & -1 & -8 & \mathrm{b}_{3} \end{array}\right]\left(\begin{array}{l} .\\ +3r_{1}.\\ -5\mathrm{r}_{1} \end{array}\right)$ $\sim\left[\begin{array}{llll} 1 & -3 & -4 & b_{1}\\ 0 & -7 & -6 & 3\mathrm{b}_{1}+b_{2}\\ 0 & 14 & 12 & -5\mathrm{b}_{1}+\mathrm{b}_{3} \end{array}\right]\left(\begin{array}{l} .\\ .\\ +2\mathrm{r}_{2} \end{array}\right)\sim$ $\sim\left[\begin{array}{llll} 1 & -3 & -4 & b_{1}\\ 0 & -7 & -6 & 3\mathrm{b}_{1}+b_{2}\\ 0 & 0 & 0 & -5\mathrm{b}_{1}+2\mathrm{b}_{2}+\mathrm{b}_{3} \end{array}\right]$ The last row represents the equation $0=\mathrm{b}_{1}+2\mathrm{b}_{2}+\mathrm{b}_{3}$ When $-5\mathrm{b}_{1}+2\mathrm{b}_{2}+\mathrm{b}_{3}\neq 0,\ \mathrm{A}\mathrm{x}=\mathrm{b}$ does not have a solution. When $-5\mathrm{b}_{1}+2\mathrm{b}_{2}+\mathrm{b}_{3}=0,\ \mathrm{A}\mathrm{x}=\mathrm{b}$ has a solution.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.