Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.4 Exercises - Page 41: 15

Answer

$\mathrm{A}\mathrm{x}=\mathrm{b}$ does not have a solution for all $\mathrm{b}\in \mathbb{R}^{2}$ $\mathrm{A}\mathrm{x}=\mathrm{b}$ has solutions when $\mathrm{b}$ has the form $(\mathrm{t},-3\mathrm{t}), \mathrm{t}\in \mathbb{R}.$

Work Step by Step

Reduce the augmented matrix $[\mathrm{A}\ \mathrm{x}]$ $\left[\begin{array}{lll} 2 & -1 & b_{1}\\ -6 & 3 & b_{2} \end{array}\right]\left(\begin{array}{l} .\\ +3r_{1}. \end{array}\right)\sim\left[\begin{array}{lll} 2 & -1 & b_{1}\\ 0 & 0 & 3b_{1}+b_{2} \end{array}\right]$ The last row represents the equation $0=3b_{1}+b_{2}$ When $3\mathrm{b}_{1}+\mathrm{b}_{2}\neq 0,\ \mathrm{A}\mathrm{x}=\mathrm{b}$ does not have a solution. When $\mathrm{b}_{2}=-3\mathrm{b}_{1},\ \mathrm{A}\mathrm{x}=\mathrm{b}$ has a solution.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.