Answer
let $t$ represent a parameter. The line will go through $p$ parallel to $t*(q-p)$.
$\mathbf{x}=\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}=\begin{bmatrix}2\\-5\end{bmatrix}+t\begin{bmatrix}-5\\6\end{bmatrix}$
Work Step by Step
$\mathbf{p}=\begin{bmatrix}2\\-5\end{bmatrix}$ $\mathbf{q}=\begin{bmatrix}-3\\1\end{bmatrix}$
let $t$ represent a parameter. The line $M$ will go through $p$ parallel to $t*(q-p)$.
$\mathbf{x}=\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}=\begin{bmatrix}2\\-5\end{bmatrix}+t\begin{bmatrix}-3-2\\1-(-5)\end{bmatrix}=\begin{bmatrix}2\\-5\end{bmatrix}+t\begin{bmatrix}-5\\6\end{bmatrix}$