Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.5 Exercises - Page 48: 5

Answer

$\mathbf{x}=x_{3}\begin{bmatrix}5\\-2\\1\end{bmatrix}$, for any $x_{3}$ in $\mathbb{R}$

Work Step by Step

We solve the homogeneous system by performing elimination on the coefficient matrix: $\begin{bmatrix}1&3&1\\-4&-9&2\\0&-3&-6\end{bmatrix}\sim \begin{bmatrix}1&3&1\\0&3&6\\0&-3&-6\end{bmatrix}\sim \begin{bmatrix}1&3&1\\0&3&6\\0&0&0\end{bmatrix}\sim \begin{bmatrix}1&0&-5\\0&3&6\\0&0&0\end{bmatrix}\sim \begin{bmatrix}1&0&-5\\0&1&2\\0&0&0\end{bmatrix}$ The rref matrix represents the equations $\begin{cases}x_{1}-5x_{3}=0\\x_{2}+2x_{3}=0\\0=0\end{cases}$ Solving for the basic variables ($x_{1}$ and $x_{2}$) in terms of the free variable ($x_{3}$), we get $\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\end{bmatrix}=\begin{bmatrix}5x_{3}\\-2x_{3}\\x_{3}\end{bmatrix}=x_{3}\begin{bmatrix}5\\-2\\1\end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.