Answer
let $t$ represent a parameter. The line M will go through $p$ parallel to $t*(q-p)$.
$\mathbf{x}=\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}=\begin{bmatrix}-6\\3\end{bmatrix}+t\begin{bmatrix}6\\7\end{bmatrix}$
Work Step by Step
$\mathbf{p}=\begin{bmatrix}-6\\3\end{bmatrix}$ $\mathbf{q}=\begin{bmatrix}0\\-4\end{bmatrix}$
let $t$ represent a parameter. The line $M$ will go through $p$ parallel to $t*(q-p)$.
$\mathbf{x}=\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}=\begin{bmatrix}-6\\3\end{bmatrix}+t\begin{bmatrix}0-(-6)\\3-(-4)\end{bmatrix}=\begin{bmatrix}-6\\3\end{bmatrix}+t\begin{bmatrix}6\\7\end{bmatrix}$