Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.6 Exercises - Page 55: 10

Answer

\begin{array}{l} 16 M n S+13 A s_{2} C r_{1} 0 O_{3} 5+374 H_{2} S O_{4}=16 H M n O_{4}+26 A s H_{3}+130 C r S_{3} O_{1} 2+ \\ 327 H_{2} O \end{array}

Work Step by Step

\[ \begin{array}{l} M n S=\left[\begin{array}{l} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right] ; A s_{2} C r_{1} 0 O_{3} 5=\left[\begin{array}{l} 0 \\ 0 \\ 2 \\ 10 \\ 35 \\ 0 \end{array}\right] ; H_{2} S O_{4}=\left[\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \\ 4 \\ 2 \end{array}\right] ; H M n O_{4}= \\ {\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 0 \\ 4 \\ 1 \end{array}\right] ; A s H_{3}=\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 3 \end{array}\right] ; C r S_{3} O_{1} 2=\left[\begin{array}{l} 0 \\ 3 \\ 1 \\ 12 \\ 0 \end{array}\right] ; H_{2} O=\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \end{array}\right]} \end{array} \] A systematic method for balancing the chemical equation is to set up a vector equation that describe the number of atoms of each type present in a reaction. since given equation involves 6 types of atoms. Construct a vector equation for each reactant and product 2 \[ \begin{array}{l} x_{1}\left[\begin{array}{l} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right]+x_{2}\left[\begin{array}{l} 0 \\ 0 \\ 2 \\ 10 \\ 35 \\ 0 \end{array}\right]+x_{3}\left[\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \\ 4 \\ 2 \end{array}\right]=x_{4}\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 0 \\ 4 \\ 1 \end{array}\right]+x_{5}\left[\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 3 \end{array}\right]+ \\ {\left[\begin{array}{c} 0 \\ 3 \\ 0 \\ 1 \\ 12 \\ 0 \end{array}\right]+x_{7}\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{array}\right]} \end{array} \] To balance given equation, the coefficient must satisfy Row reduction of augmented matrix leads to these general solution. 6 \[ \begin{array}{l} x_{1}=16 \\ x_{2}=13 \\ x_{3}=374 \\ x_{4}=16 \\ x_{5}=26 \\ x_{6}=130 \\ x_{7}=327 \end{array} \] To avoid fraction take $x_{7}=327$ and find other values. 7 \[ \begin{array}{l} 16 M n S+13 A s_{2} C r_{1} 0 O_{3} 5+374 H_{2} S O_{4}=16 H M n O_{4}+ \\ 26 A s H_{3}+130 C r S_{3} O_{1} 2+327 H_{2} O \end{array} \] Balancing equation for given chemical reaction.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.