Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.6 Exercises - Page 55: 7

Answer

$3 N a H C O_{3}+H_{3} C_{6} H_{5} O_{7}=N a_{3} C{6} H{5} O{7}+3 H{2} O+3 C O{2}$

Work Step by Step

$N a H C O_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right] ; H_{3} C_{6} H_{5} O_{7}=\left[\begin{array}{l}0 \\ 8 \\ 6 \\ 7\end{array}\right] ; N a_{3} C_{6} H_{5} O_{7}=$ $\left[\begin{array}{l}3 \\ 5 \\ 6 \\ 7\end{array}\right] ; H_{2} O=\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 1\end{array}\right] ; C O_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right]$ A systematic method for balancing the chemical equation is to set up a vector equation that describe the number of atoms of each type present in a reaction. Because given equation involves 4 types of atoms. Construct a vector equation for each reactant and product. The first number is the number of $\mathrm{Na}$ then the number of $\mathrm{H}$ atoms, then $\mathrm{C}$, and the last number in each column is 0 2 \[ x_{1}\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 3 \end{array}\right]+x_{2}\left[\begin{array}{l} 0 \\ 8 \\ 6 \\ 7 \end{array}\right]=x_{3}\left[\begin{array}{l} 3 \\ 5 \\ 6 \\ 7 \end{array}\right]+x_{4}\left[\begin{array}{l} 0 \\ 2 \\ 0 \\ 1 \end{array}\right]+x_{5}\left[\begin{array}{l} 0 \\ 0 \\ 1 \\ 2 \end{array}\right] \] To balance given equation, the coefficient must achieve this \[ \begin{array}{l} x_{1}\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 3 \end{array}\right]+x_{2}\left[\begin{array}{l} 0 \\ 8 \\ 6 \\ 7 \end{array}\right]+x_{3}\left[\begin{array}{l} -3 \\ -5 \\ -6 \\ -7 \end{array}\right]+x_{4}\left[\begin{array}{c} 0 \\ -2 \\ 0 \\ -1 \end{array}\right]+x_{5}\left[\begin{array}{c} 0 \\ 0 \\ -1 \\ -2 \end{array}\right]= \\ {\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right]} \end{array} \] To solve, move all terms to left \[ \left[\begin{array}{ccccc} 1 & 0 & -3 & 0 & 0 \\ 1 & 8 & -5 & -2 & 0 \\ 1 & 6 & -6 & 0 & -1 \\ 3 & 7 & -7 & -1 & -2 \end{array}\right] \sim\left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 / 3 \\ 0 & 0 & 1 & 0 & -1 / 3 \\ 0 & 0 & 0 & 1 & -1 \end{array}\right] \] Row reduce the coefficient matrix. \[ \begin{array}{l} x_{1}=x_{5} \\ x_{2}=\frac{1}{3} x_{5} \\ x_{3}=\frac{1}{3} x_{5} \\ x_{4}=x_{5} \\ \text { with } x_{5} \text { free } \end{array} \] Row reduction of matrix leads to the general solution. 6 \[ x_{1}=3, x_{2}=1, x_{3}=1, x_{4}=3, x_{5}=3 \] To avoid fraction take $x_{5}=3$ and find $x_{1}, x_{2}, x_{3}, x_{4}$ 7 \[ 3 N a H C O_{3}+H_{3} C_{6} H_{5} O_{7}=N a_{3} C_{6} H_{5} O_{7}+3 H_{2} O+ \] $3 C O_{2}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.