Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.6 Exercises - Page 55: 9

Answer

\begin{array}{l} x_{1}=\frac{x_{6}}{6} \quad x_{2}=\frac{14 x_{6}}{99} \quad x_{3}=\frac{x_{6}}{18} \\ x_{4}=\frac{7 x_{6}}{99} \quad x_{5}=\frac{28 x_{6}}{99} \quad x_{6} \text { is free } \end{array}

Work Step by Step

Equation involves five types of atoms. So we need vector in $\mathbb{R}^{5}$ that lists the number of atoms in molecule, for example: \[ v=\left[\begin{array}{cc} \text { no. of } \mathrm{Pb} \\ \text { no. of } \mathrm{N} \\ \text { no. of } \mathrm{Cr} \\ \text { no. of } \mathrm{Mn} \\ \text { no. of } \mathrm{O} \end{array}\right. \] So we have: \[ \begin{array}{c} \mathrm{PbN}_{6}=\left[\begin{array}{c} 1 \\ 6 \\ 0 \\ 0 \\ 0 \end{array}\right] & \mathrm{CrMn}_{2} \mathrm{O}_{8}=\left[\begin{array}{c} 0 \\ 0 \\ 1 \\ 2 \\ 8 \end{array}\right] \quad \mathrm{Pb}_{3} \mathrm{O}_{4}=\left[\begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 4 \end{array}\right] \\ \mathrm{Cr}_{2} \mathrm{O}_{3}=\left[\begin{array}{c} 0 \\ 0 \\ 2 \\ 3 \end{array}\right] \quad \mathrm{MnO}_{2}=\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 2 \end{array}\right] \quad \mathrm{NO}=\left[\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{array}\right] \end{array} \] Let $x_{1}, \ldots x_{6}$ be the coefficients in the equation. They must satisfy: \[ x_{1}\left[\begin{array}{l} 1 \\ 6 \\ 0 \\ 0 \\ 0 \end{array}\right]+x_{2}\left[\begin{array}{l} 0 \\ 0 \\ 1 \\ 2 \\ 8 \end{array}\right]=x_{3}\left[\begin{array}{l} 3 \\ 0 \\ 0 \\ 0 \\ 4 \end{array}\right]+x_{4}\left[\begin{array}{l} 0 \\ 0 \\ 2 \\ 0 \\ 3 \end{array}\right]+x_{5}\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 1 \\ 2 \end{array}\right]+x_{6}\left[\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{array}\right] \] \[ x_{1}\left[\begin{array}{l} 1 \\ 6 \\ 0 \\ 0 \\ 0 \end{array}\right]+x_{2}\left[\begin{array}{l} 0 \\ 0 \\ 1 \\ 2 \\ 8 \end{array}\right]+x_{3}\left[\begin{array}{c} -3 \\ 0 \\ 0 \\ 0 \\ -4 \end{array}\right]+x_{4}\left[\begin{array}{c} 0 \\ 0 \\ -2 \\ 0 \\ 3 \end{array}\right]+x_{5}\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ -1 \\ -2 \end{array}\right]+x_{6}\left[\begin{array}{c} 0 \\ -1 \\ 0 \\ 0 \\ -1 \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right] \] 2 The augmented matrix is: \[ \left[\begin{array}{ccccccc} 1 & 0 & -3 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & -1 & 0 & 0 \\ 0 & 8 & 4 & 3 & -2 & -1 & 0 \end{array}\right] \] Using MATLAB we can find its reduced echelon form: \[ \left[\begin{array}{ccccccc} 1 & 0 & -3 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & -1 & 0 & 0 \\ 0 & 8 & 4 & 3 & -2 & -1 & 0 \end{array}\right] \sim\left[\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & -1 / 6 & 0 \\ 0 & 1 & 0 & 0 & 0 & -14 / 99 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 / 18 & 0 \\ 0 & 0 & 0 & 1 & 0 & -7 / 99 & 0 \\ 0 & 0 & 0 & 0 & 1 & -28 / 99 & 0 \end{array}\right] \] The general solution is: \[ \begin{aligned} x_{1}=\frac{x_{6}}{6} & x_{2}=\frac{14 x_{6}}{99} \quad x_{3}=\frac{x_{6}}{18} \\ x_{4}=\frac{7 x_{6}}{99} \quad x_{5}=\frac{28 x_{6}}{99} & x_{6} \text { is free } \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.