Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.8 Exercises - Page 69: 17

Answer

$\begin{bmatrix}6\\3\end{bmatrix}$, $\begin{bmatrix}-2\\6\end{bmatrix}$, $\begin{bmatrix}4\\9\end{bmatrix}$

Work Step by Step

Since $T$ is a linear transformation, it must be that $T(a\vec{x}+b\vec{y})=aT(\vec{x})+bT(\vec{y})$ for any vectors $\vec{x}$, $\vec{y}$ in the domain and for any scalars $a$, $b$. Hence: $T(3\vec{u})=3T(\vec{u})=3\begin{bmatrix}2\\1\end{bmatrix}=\begin{bmatrix}6\\3\end{bmatrix}$ $T(2\vec{v})=2T(\vec{v})=2\begin{bmatrix}-1\\3\end{bmatrix}=\begin{bmatrix}-2\\6\end{bmatrix}$ $T(3\vec{u}+2\vec{v})=3T(\vec{u})+2T(\vec{v})=\begin{bmatrix}6\\3\end{bmatrix}+\begin{bmatrix}-2\\6\end{bmatrix}=\begin{bmatrix}4\\9\end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.