Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.8 Exercises - Page 70: 20

Answer

$A=\begin{bmatrix}-2&7\\5&-3\end{bmatrix}$

Work Step by Step

Let's use the notation $A=\begin{bmatrix}\mathbf{a_{1}}&\mathbf{a_{2}}\end{bmatrix}$. Then we want vectors $\mathbf{a_{1}}, \mathbf{a_{2}}$ such that the following holds true: $A\mathbf{x}=\begin{bmatrix}\mathbf{a_{1}}&\mathbf{a_{2}}\end{bmatrix}\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}=x_{1}\mathbf{a_{1}}+x_{2}\mathbf{a_{2}}=x_{1}\mathbf{v_{1}}+x_{2}\mathbf{v_{2}}$. But that simply means $\mathbf{a_{1}}=\mathbf{v_{1}}$ and $\mathbf{a_{2}}=\mathbf{v_{2}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.