Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.8 Exercises - Page 70: 26

Answer

See explanation

Work Step by Step

Given : Vectors $\mathbf{u}$ and $\mathbf{v}$ in $\mathbb{R}^{3}(\text { linearly independent })$ Plane $P(\text { through } \mathbf{u}, \mathbf{v} \text { and } \mathbf{0})$ Linear Transformation $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ Parametric Equation $(\text { of } P):$ $\mathbf{x}=s \mathbf{u}+t \mathbf{v},(s, t)$ in $\mathbb{R}$ 2 Goal : Show that $T$ maps $P$ onto a plane through 0 or onto a line through 0 or onto the origin in $\mathbb{R}^{3}$. Determine what must be true about $T(\mathbf{u})$ and $T(\mathbf{v})$ in order for the image of the plane $P$ to be a plane. 3 Affine Transformation Properties of Linear Transformation \[ \operatorname{Span}\{\mathbf{u}, \mathbf{v}\} \] Plan: Verify that $T(\mathbf{x})$ satisfies property $T(s \mathbf{x}+t \mathbf{y})=$ $s T(\mathbf{x})+t T(\mathbf{y})$ of the definition of linear transformation Verify that $T(\mathbf{x})$ goes through the origin. Solve: \[ \begin{array}{c} T(\mathbf{x})=T(s \mathbf{u}+t \mathbf{v}) \\ =T(s \mathbf{u})+T(t \mathbf{v})=s T(\mathbf{u})+t T(\mathbf{v}) \\ T(\mathbf{0})=s T(\mathbf{0})+t T(\mathbf{0}) \\ =\mathbf{0} \end{array} \]$T(\mathbf{x})$ goes through the origin. Result: $T(\mathbf{x})$ is a plane in $\mathbb{R}^{3}$ through 0 in the case when $T((\mathbf{u})) \neq t T((\mathbf{v}))$ and $T((\mathbf{v}) \neq s T(\mathbf{u})$ $T(\mathbf{x})$ is a line in $\mathbb{R}^{3}$ through $\mathbf{0}$ in the case when $T((\mathbf{u}))=t T((\mathbf{v}))$ or $T((\mathbf{v})=s T(\mathbf{u})$ $T(\mathbf{x})$ is a zero vector $\mathbb{R}^{3}$ in the case when $T(\mathbf{u})=$ $T \mathbf{v}=\mathbf{0}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.