Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - Supplementary Exercises - Page 90: 6

Answer

See sxplanation

Work Step by Step

Given: Linear System: \[ \begin{array}{l} 4 x_{1}-2 x_{2}+7 x_{3}=-5 \\ 8 x_{1}-3 x_{2}+10 x_{3}=-3 \end{array} \] Goal: a.) Define appropriate vectors, re-write the system in terms of linear combinations. Determine if the system is consistent. b.) Define an appropriate matrix. Restate the problem using "columns of $\mathrm{A}^{\prime \prime}$ c.) Define an appropriate linear transformation, $T$, using the matrix created in $b .$ Restate the problem in terms of $T$ 3 Concepts: Linear Combination Vector Column Linear Transformation \[ \text { put } \mathbf{a}_{1}=\left[\begin{array}{l} 4 \\ 8 \end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l} -2 \\ -3 \end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{c} 7 \\ 10 \end{array}\right], \mathbf{b}=\left[\begin{array}{l} -5 \\ -3 \end{array}\right] \] For the given vectors, the system is represented by the following vector equation: \[ x_{1}\left[\begin{array}{l} 4 \\ 8 \end{array}\right]+x_{2}\left[\begin{array}{l} -2 \\ -3 \end{array}\right]+x_{3}\left[\begin{array}{c} 7 \\ 10 \end{array}\right]=\left[\begin{array}{c} -5 \\ -3 \end{array}\right] \] make an augmented matrix for the vector equation, then decrease the matrix to row echelon form to determine if $\mathbf{b}$ is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ \[ \left[\begin{array}{cccc} 4 & -2 & 7 & -5 \\ 8 & -3 & 10 & -3 \end{array}\right] \sim\left[\begin{array}{cccc} 4 & -2 & 7 & 5 \\ 0 & 0 & -4 & 7 \end{array}\right] \] Solve The system in (a) is consistent. Therefore, b is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ \[ \text { Let } A=\left[\begin{array}{cccc} 4 & -2 & 7 & -5 \\ 8 & -3 & 10 & -3 \end{array}\right] \] Determine if $\mathbf{b}$ is a linear combination of the columns of $A$ Solve $\operatorname{Let} T(\mathbf{x})=A \mathbf{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.