Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.5 Continuity - Exercises Set 1.5 - Page 99: 21

Answer

the function $$ f(x)=\left\{\begin{array}{ll}{2 x+3,} & {x \leq 4} \\ {7+\frac{16}{x},} & {x>4}\end{array}\right. $$ is continuous on the domain of $f$

Work Step by Step

$$ f(x)=\left\{\begin{array}{ll}{2 x+3,} & {x \leq 4} \\ {7+\frac{16}{x},} & {x>4}\end{array}\right. $$ We can obtain $$ \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}} (7+\frac{16}{x})=11 $$ $$ \lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}} (2 x+3)=11 $$ We have $$\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{-}} f(x)$$ Thus $$ \lim _{x \rightarrow 4} f(x)$$ $$ f(4)= \lim _{x \rightarrow 4} f(x) =11$$ Therefore, the function $$ f(x)=\left\{\begin{array}{ll}{2 x+3,} & {x \leq 4} \\ {7+\frac{16}{x},} & {x>4}\end{array}\right. $$ is continuous on domain $f$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.