Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.5 Continuity - Exercises Set 1.5 - Page 99: 31

Answer

k=4

Work Step by Step

f is continuous at 2 if and only if $\lim\limits_{x \to 2^{-}}f(x)=\lim\limits_{x \to 2^{+}}f(x)= f(2)$ This implies that $\lim\limits_{x \to 2^{-}}m(x+1)+k=\lim\limits_{x \to 2^{+}}x^{2}+5= f(2)$ Or 3m+k= 9 $\;\>\;\>\>...(1)$ f is continuous at -1 if and only if $\lim\limits_{x \to -1^{-}}f(x)=\lim\limits_{x \to -1^{+}}f(x)= f(-1)$ $\implies \lim\limits_{x \to -1^{-}}2x^{3}+x+7=\lim\limits_{x \to -1^{+}}m(x+1)+k= f(-1)$ Or k=4 $\>\>\>\>...(2)$ From equations (1) and (2), we get $3m+4=9$ or $m=\frac{5}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.