Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.5 Continuity - Exercises Set 1.5 - Page 99: 22

Answer

$$ f(x)=\left\{\begin{array}{ll}{\frac{3}{x-1},} & {x \neq 1} \\ {3,} & {x=1}\end{array}\right. $$ value $x=1$ , at which $f $ is not continuous

Work Step by Step

$$ f(x)=\left\{\begin{array}{ll}{\frac{3}{x-1},} & {x \neq 1} \\ {3,} & {x=1}\end{array}\right. $$ We obtain that \begin{equation} \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{3}{x-1}= \infty \end{equation} \begin{equation} \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} \frac{3}{x-1}=-\infty \end{equation} $$ \lim _{x \rightarrow 1^{-}} f(x) \ne \lim _{x \rightarrow 1^{-}} f(x) $$ therefore $$ \lim _{x \rightarrow 1} f(x) $$ does not exist therefore at $x=1$ , $f $ is not continuous
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.