Answer
(a)
Let a function $g(x)=|x|$
Now let $\lim_\limits{x\to c}|f(x)|=0$
Using g function.
We get, $\lim_\limits{x\to c}g(f(x))=0$
Now by the property of limit.
We get, $g\left(\lim_\limits{x\to c}f(x)\right)=0$
We know that a modulus function is zero only at the origin.
Hence, $\lim_\limits{x\to c}f(x)=0$
(b)
Again let a function $g(x)=|x|$
And also, let $\lim_\limits{x\to c}f(x)=L$
We need to prove $\lim_\limits{x\to c}|f(x)|=|L|$
Which can also be written as $\lim_\limits{x\to c}g(f(x))=g(L)$
Now use the property of limit on the right-hand side.
We get, $\lim_\limits{x\to c}g(f(x))=g\left(\lim_\limits{x\to c}f(x)\right)$
$\implies \lim_\limits{x\to c}g(f(x))=g(L)=L.H.S$
Hence proved
Work Step by Step
(a)
Let a function $g(x)=|x|$
Now let $\lim_\limits{x\to c}|f(x)|=0$
Using g function.
We get, $\lim_\limits{x\to c}g(f(x))=0$
Now by the property of limit.
We get, $g\left(\lim_\limits{x\to c}f(x)\right)=0$
We know that a modulus function is zero only at the origin.
Hence, $\lim_\limits{x\to c}f(x)=0$
(b)
Again let a function $g(x)=|x|$
And also, let $\lim_\limits{x\to c}f(x)=L$
We need to prove $\lim_\limits{x\to c}|f(x)|=|L|$
Which can also be written as $\lim_\limits{x\to c}g(f(x))=g(L)$
Now use the property of limit on the right-hand side.
We get, $\lim_\limits{x\to c}g(f(x))=g\left(\lim_\limits{x\to c}f(x)\right)$
$\implies \lim_\limits{x\to c}g(f(x))=g(L)=L.H.S$
Hence proved