Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 1 - Limits and Their Properties - 1.3 Exercises - Page 69: 112

Answer

(a) Let a function $g(x)=|x|$ Now let $\lim_\limits{x\to c}|f(x)|=0$ Using g function. We get, $\lim_\limits{x\to c}g(f(x))=0$ Now by the property of limit. We get, $g\left(\lim_\limits{x\to c}f(x)\right)=0$ We know that a modulus function is zero only at the origin. Hence, $\lim_\limits{x\to c}f(x)=0$ (b) Again let a function $g(x)=|x|$ And also, let $\lim_\limits{x\to c}f(x)=L$ We need to prove $\lim_\limits{x\to c}|f(x)|=|L|$ Which can also be written as $\lim_\limits{x\to c}g(f(x))=g(L)$ Now use the property of limit on the right-hand side. We get, $\lim_\limits{x\to c}g(f(x))=g\left(\lim_\limits{x\to c}f(x)\right)$ $\implies \lim_\limits{x\to c}g(f(x))=g(L)=L.H.S$ Hence proved

Work Step by Step

(a) Let a function $g(x)=|x|$ Now let $\lim_\limits{x\to c}|f(x)|=0$ Using g function. We get, $\lim_\limits{x\to c}g(f(x))=0$ Now by the property of limit. We get, $g\left(\lim_\limits{x\to c}f(x)\right)=0$ We know that a modulus function is zero only at the origin. Hence, $\lim_\limits{x\to c}f(x)=0$ (b) Again let a function $g(x)=|x|$ And also, let $\lim_\limits{x\to c}f(x)=L$ We need to prove $\lim_\limits{x\to c}|f(x)|=|L|$ Which can also be written as $\lim_\limits{x\to c}g(f(x))=g(L)$ Now use the property of limit on the right-hand side. We get, $\lim_\limits{x\to c}g(f(x))=g\left(\lim_\limits{x\to c}f(x)\right)$ $\implies \lim_\limits{x\to c}g(f(x))=g(L)=L.H.S$ Hence proved
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.