Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 1 - Limits and Their Properties - Review Exercises - Page 92: 66

Answer

(a)$$D_f= (- \infty , 0] \cup [1, + \infty )$$ (b)$$\lim_{x \to 0^-}\sqrt{x(x-1)}=0$$ (c)$$\lim_{x \to 1^+}\sqrt{x(x-1)}=0$$

Work Step by Step

(a) The domain of a square root function is the set of real numbers making the radicand non-negative. Thus, we have$$x(x-1) \ge 0 \quad \Rightarrow \quad \begin{cases}x \ge 0, \\ x-1 \ge 0 \end{cases} \quad \text{or} \quad \begin{cases} x \le 0, \\ x-1 \le 0 \end{cases} \quad \Rightarrow \quad \begin{cases}x \ge 0, \\ x \ge 1 \end{cases} \quad \text{or} \quad \begin{cases} x \le 0, \\ x \le 1 \end{cases} \quad \Rightarrow \quad D_f= (- \infty , 0] \cup [1, + \infty ).$$ (b) $$\lim_{x \to 0^-}\sqrt{x(x-1)}=\sqrt{0(0-1)}=0$$ (c) $$\lim_{x \to 1^+}\sqrt{x(x-1)}=\sqrt{1(1-1)}=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.