Answer
Please see below.
Work Step by Step
$$f(x)=\frac{\sin x }{x}$$ $$f(1) \approx 0.841, \quad f(0.5) \approx 0.959, \quad f(0.25) \approx 0.990, \quad \quad f(0.1) \approx 0.998 \quad f(0.01) \approx 0.999$$ $$f(-1) \approx 0.841, \quad f(-0.5) \approx 0.959, \quad f(-0.25) \approx 0.990, \quad \quad f(-0.1) \approx 0.998 \quad f(-0.01) \approx 0.999$$
According to the table of values of the function $f(x)=\frac{\sin x}{x}$, we see that when $x$ approaches $0$ from both left and right, the values of the function approach $1$. Thus, we conclude that$$\lim_{x \to 0} \frac{\sin x }{x}=1.$$