Answer
Domain: $ (-\infty, -4) \cup (-4, \infty) $
Range: $ (-\infty, 1) \cup (1, \infty) $
Work Step by Step
In a rational function, the denominator must not equal zero. In the function $ \frac{x-2}{x+4} $ , $ -4 $ is the only value $x$ that would make the denominator zero. So the domain is $ (-\infty, -4) \cup (-4, \infty) $
If the degree of the polynomial in the numerator equals the degree of the polynomial in the denominator, then the function has a horizontal asymptote at
Range: $ (-\infty, 1) \cup (1, \infty) $