Answer
False
Work Step by Step
Here is a counterexample:
$f(x)=x+1$
$a=4$
If we assume the statement $f(ax)=af(x)$ is true, then we run into a contradiction:
$f(ax)=af(x)$
$f(4x)=4(x+1)$
$4x+1=4x+4$
$1=4$
Therefore the statement $f(ax)=af(x)$ is false.