Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter P - P.3 - Linear Models and Rates of Change - Exercises - Page 30: 97

Answer

$$f(x) = \begin{cases}-2x+2 & \text{ if }x <0 \\ 2 & \text { if } 0 \le x <2 \\ 2x-2 & \text { if } x \ge 2 \end{cases}$$

Work Step by Step

According to the definition of "absolute function", we have $|x|= \begin{cases} x & \text{ if } x \ge 0 \\ -x & \text{ if } x <0 \end{cases}$ and $|x-2|= \begin{cases} (x-2) & \text{ if } (x-2) \ge 0 \\ -(x-2) & \text { if } (x-2) < 0 \end{cases}\qquad \quad = \begin{cases} x-2 & \text { if } x \ge 2 \\ -x+2 & \text { if } x <2 \end{cases}\, .$ According to the above, we can write the function $f(x)$ as follows. For $x < 0$, $f(x)=|x| +|x-2|=-x +(-x+2) = -2x+2 \,;$ for $0 \le x <2$, $f(x)= |x|+|x-2|=x+(-x+2)=2 \,;$ for $x \ge 2$, $f(x)= |x|+|x-2|= x+(x-2)=2x-2 \, .$ Hence, $$f(x) = \begin{cases}-2x+2 & \text{ if }x <0 \\ 2 & \text { if } 0 \le x <2 \\ 2x-2 & \text { if } x \ge 2 \end{cases} \, .$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.