Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.2 Limits: A Numerical and Graphical Approach - Exercises - Page 54: 30

Answer

$\displaystyle\lim_{h\rightarrow 0} \dfrac{3^h-1}{h}\approx 1.0986$

Work Step by Step

We have to estimate the limit: $\displaystyle\lim_{h\rightarrow 0} \dfrac{3^h-1}{h}$ Compute $\dfrac{3^h-1}{h}$ for values of $\theta$ close to 0: $\dfrac{3^{-0.01}-1}{-0.01}\approx 1.0925996$ $\dfrac{3^{-0.001}-1}{-0.001}\approx 1.098009$ $\dfrac{3^{-0.0001}-1}{-0.0001}\approx 1.0985519$ $\dfrac{3^{-0.00001}-1}{-0.00001}\approx 1.0986063$ $\dfrac{3^{-0.000001}-1}{-0.000001}\approx 1.0986117$ $\dfrac{3^{-0.0000001}-1}{-0.0000001}\approx 1.0986122$ $\dfrac{3^{0.0000001}-1}{0.0000001}\approx 1.0986123$ $\dfrac{3^{0.000001}-1}{0.000001}\approx 1.0986129$ $\dfrac{3^{0.00001}-1}{0.00001}\approx 1.0986183$ $\dfrac{3^{0.0001}-1}{0.0001}\approx 1.0986726$ $\dfrac{3^{0.001}-1}{0.001}\approx 1.099216$ $\dfrac{3^{0.01}-1}{0.01}\approx 1.1046692$ Therefore we have: $\displaystyle\lim_{h\rightarrow 0} \dfrac{3^h-1}{h}\approx 1.0986$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.