Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.8 Continuity - 1.8 Exercises - Page 92: 38

Answer

\[2\]

Work Step by Step

Let \[L=\lim_{x\rightarrow 2}\frac{x^3}{\sqrt{x^2+x-2}}\] Using the property : If $ \displaystyle\lim_{x\rightarrow a}f(x)=L_1,\; \displaystyle\lim_{x\rightarrow a}g(x)=L_2$ then \[\lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\frac{L_1}{L_2}\] Since \[\lim_{x\rightarrow 2}(x^2+x-2)=(-2)^2+(-2)-2=0\] \[L=\frac{\lim_{x\rightarrow 2}(x^3)}{\lim_{x\rightarrow 2}(\sqrt{x^2+x-2})}\] Since polynomails are everyuwhere continuous therefore \[\Rightarrow L=\frac{(2)^3}{\sqrt{(2)^2+2-2}}=\frac{8}{4}=2\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.