Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.2 Representing Functions - 1.2 Exercises - Page 26: 82

Answer

a) $2n$, where $n$ is the degree of $f$ b) $n^2$ c) $m+n$, where $m$ is the degree of $g$ d) $mn$

Work Step by Step

Let's note the functions: $f(x)=a_nx^n+a_{n-1}x^{n-1}+....+a_1x+a_0$ $g(x)=b_mx^m+b_{m-1}x^{m-1}+....+b_1x+b_0$ a) $(f\cdot f)(x)=f(x)\cdot f(x)$ $=(a_nx^n+a_{n-1}x^{n-1}+....+a_1x+a_0)\cdot (a_nx^n+a_{n-1}x^{n-1}+....+a_1x+a_0)$ $=a_n^2x^{2n}+.....+a_0^2$ Therefore the degree of $f\cdot f$ is $2n$. b) $(f\circ f)(x)=f(f(x))=f(a_nx^n+a_{n-1}x^{n-1}+....+a_1x+a_0)$ $=a_n(a_nx^n+a_{n-1}x^{n-1}+....+a_1x+a_0)^n+....+a_0$ $=a_n(a_n^nx^{n^2}+....)+....+a_0$ $=a_n^{n+1}x^{n^2}+.......+a_0$ Therefore the degree of $f\circ f$ is $n^2$. c) $(f\cdot g)(x)=f(x)\cdot g(x)$ $=(a_nx^n+a_{n-1}x^{n-1}+....+a_1x+a_0)\cdot (b_mx^m+b_{m-1}x^{m-1}+....+b_1x+b_0)$ $=a_nb_mx^{n+m}+.....+a_0b_0$ Therefore the degree of $f\cdot g$ is $m+n$. d) $(f\circ g)(x)=f(g(x))=f(b_mx^m+b_{m-1}x^{m-1}+....+b_1x+b_0)$ $=a_n(b_mx^m+b_{m-1}x^{m-1}+....+b_1x+b_0)^n+....+a_0$ $=a_nb_m^nx^{mn}+....+a_0$ Therefore the degree of $f\circ g$ is $mn$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.