Answer
a) See table
b) See graph
c) $n=10$
Work Step by Step
We are given the factorial function:
$f(n)=n!=n\cdot (n-1)\cdot (n-2)\cdot....\cdot 3\cdot 2\cdot 1$
a) Build a table of the factorial function for $n=1,2,3,4,5$.
b) Plot the points and join them by a smooth curve.
c) Compute $f(n)$ until we reach $10^6$:
$f(7)=7!=5040$
$f(8)=8!=40320$
$f(9)=9!=362880$
$f(10)=10!=3628800=3.6\cdot 10^6$
Therefore the least value for which $n!>10^6$ is $n=10$.