Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.2 Representing Functions - 1.2 Exercises - Page 26: 87

Answer

a) See table b) The set of all natural numbers c) $n=14$

Work Step by Step

We are given the factorial function: T(n)=1^2+2^2+....+n^2 a) Build a table of the function for n=1,2,...,10. T(1)=1^2=1 T(2)=1^2+2^2=5 T(3)=1^2+2^2+3^2=14 T(4)=1^2+2^2+...+4^2=30 T(5)=1^2+2^2+...+5^2=55 T(6)=1^2+2^2+...+6^2=91 T(7)=1^2+2^2+...+7^2=140 T(8)=1^2+2^2+...+8^2=204 T(9)=1^2+2^2+...+9^2=285 T(10)=1^2+2^2+...+10^2=385 b) The domain of the function T(n) consists of all the natural numbers (positive integers). c) Compute T(n) until we reach 1000: $T(11)=1^2+2^2+...+11^2=506$ $T(12)=1^2+2^2+...+12^2=650$ $T(13)=1^2+2^2+...+13^2=819$ $T(14)=1^2+2^2+...+14^2=1015$ Therefore the least value for which T(n)>1000 is n=14.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.