Answer
$log_{\frac{1}{b}} x =-log_{ b } x$
Work Step by Step
Assume that $ b\gt0$ and $b\ne1$
Using change of base rule,
$log_{\frac{1}{b}}x =\frac{ln x}{ln(\frac{1}{b})}$
Using logarithmic rule,
$log_{\frac{1}{b}}x =\frac{ln x}{ln 1 - ln b}$
$log_{\frac{1}{b}}x =\frac{ln x}{- ln b}$ (Since $ln 1=0$)
Again using change of base rule,
$log_{\frac{1}{b}}x =-log_{b}x$