Answer
See proof
Work Step by Step
We have to prove the statement:
$\log_b xy=\log_b x+\log_b y$
a) Let $x=b^p$
$y=b^q$
Solve these two equations for $p$ and $q$:
$\log_b x=\log_b b^p$
$\log_b x=p\log_b b$
$\log_b x=p$
$\log_b y=\log_b b^q$
$\log_b y=q\log_b b$
$\log_b x=q$
b) Use the property E1 for exponents to express $xy$ in terms of $b,p,q$:
$xy=b^p\cdot b^q$
$xy=b^{p+q}$
c) Compute $\log_b xy$ and simplify:
$\log_b xy=\log_b b^{p+q}$
$\log_b xy=(p+q)\log_b b$
$\log_b xy=p+q$
$\log_b xy=\log_b x+\log_b y$