Answer
See proof
Work Step by Step
We have to prove the statement:
$\log_b x^z=z\log_b x$
a) Let $x=b^p$
Solve for $p$:
$\log_b x=\log_b b^p$
$\log_b x=p\log_b b$
$\log_b x=p$
b) Use the property E3 for exponents to express $x^z$ in terms of $b,p$:
$x^z=(b^p)^z$
$x^z=b^{pz}$
c) Compute $\log_b x^z$ and simplify:
$\log_b x^z=\log_b b^{pz}$
$\log_b x^z=pz\log_b b$
$\log_b x^z=pz$
$\log_b x^z=z\log_b x$