Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - Review Exercises - Page 52: 15

Answer

a) 1; b) $x^{3/2}$; c) $(\sin\sqrt x)^3$ d) $\mathbb{R}$; e) $[-1,1]$

Work Step by Step

We are given the functions: $f(x)=x^3$ $g(x)=\sin x$ $h(x)=\sqrt x$ a) Evaluate $h(g(\pi/2))$: $h(g(\pi/2))=\sqrt {\sin (\pi/2)}=\sqrt 1=1$ b) Find $h(f(x))$: $h(f(x))=\sqrt(x^3)=x^{3/2}$ c) Find $f(g(h(x)))$: $f(g(h(x)))=f(g(\sqrt x)=f(\sin\sqrt x)=(\sin\sqrt x)^3$ d) Find $(g\circ f)(x)$: $(g\circ f)(x)=g(f(x))=g(x^3)=\sin x^3$ The domain of the function is the set of all real numbers $\mathbb{R}$. e) Find $(f\circ g)(x)$: $(f\circ g)(x)=f(g(x))=f(\sin x)=(\sin x^3)^3$ We have: $-1\leq \sin x\leq 1$ $-1\leq (\sin x)^3\leq 1$ The range is $[-1,1]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.