Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - Review Exercises - Page 52: 16

Answer

a) $f(x)=\sin x$; $g(x)=x^2+1$ b) $f(x)=x^{-3}$; $g(x)=x^2-4$ c) $f(x)=e^x$; $g(x)=\cos 2x$

Work Step by Step

a) We are given the function: $h(x)=\sin (x^2+1)$ Find the functions $f$ and $g$ so that $h=f\circ g$: $g(x)=x^2+1$ $f(x)=\sin x$ Check: $(f\circ g)(x)=f(g(x))=f(x^2+1)=\sin (x^2+1)$ b) We are given the function: $h(x)=(x^2-4)^{-3}$ Find the functions $f$ and $g$ so that $h=f\circ g$: $g(x)=x^2-4$ $f(x)=x^{-3}$ Check: $(f\circ g)(x)=f(g(x))=f(x^2-4)=(x^2-4)^{-3}$ c) We are given the function: $h(x)=e^{\cos 2x}$ Find the functions $f$ and $g$ so that $h=f\circ g$: $g(x)=\cos 2x$ $f(x)=e^x$ Check: $(f\circ g)(x)=f(g(x))=f(\cos 2x)=e^{\cos 2x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.