Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - Review Exercises - Page 52: 27

Answer

$f(x)=x^{2}-4x+5$ $f^{-1}(x)=2+\sqrt{x-1}$

Work Step by Step

$f(x)=x^{2}-4x+5$, for $x\gt2$ Substitute $f(x)$ by $y$: $y=x^{2}-4x+5$ Group the first two terms on the right side of the equation together: $y=(x^{2}-4x)+5$ Complete the square for the expression inside parentheses. Do so by adding $\Big(\dfrac{b}{2}\Big)^{2}$ to the expression inside parentheses and subtracting it from the expression outside of the parentheses. In this case, $b=-4$ $y=\Big[x^{2}-4x+\Big(-\dfrac{4}{2}\Big)^{2}\Big]+5-\Big(-\dfrac{4}{2}\Big)^{2}$ $y=(x^{2}-4x+4)+5-4$ $y=(x^{2}-4x+4)+1$ Factor the expression inside parentheses, which is a perfect square trinomial: $y=(x-2)^{2}+1$ Take $1$ to the left side and rearrange: $y-1=(x-2)^{2}$ $(x-2)^{2}=y-1$ Take the square root of both sides: $\sqrt{(x-2)^{2}}=\sqrt{y-1}$ $x-2=\sqrt{y-1}$ Take $2$ to the right side: $x=2+\sqrt{y-1}$ Interchange $x$ and $y$: $y=2+\sqrt{x-1}$ Substitute $y$ by $f^{-1}(x)$: $f^{-1}(x)=2+\sqrt{x-1}$ The graph of the function and its inverse is shown in the answer section.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.