Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.6 Exercises - Page 708: 23

Answer

$r=\dfrac{ed}{1-e \sin \theta}$

Work Step by Step

Since, the eccentricity $e$ is: $e=\dfrac{|PF|}{|Pl|}$ and $|PF|=r$ ; $|Pl|=d-r \sin \alpha$; and $\alpha =2\pi-\theta$ Thus, we have $|Pl|=d-r \sin \alpha$ or, $|Pl|=d-r\cos (2\pi-\theta)$ $\implies |Pl|=d+r \sin \theta$ Now, the equation $e=\dfrac{|PF|}{|Pl|}$ gives: $e= \dfrac{r}{d+r \sin \theta}$ This implies that $r=ed+er \sin \theta$ Therefore, we get $r=\dfrac{ed}{1-e \sin \theta}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.