Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - Review - Exercises - Page 710: 21

Answer

$2$

Work Step by Step

Given: $x=lnt$ and $y=1+t^{2}$ $\frac{dx}{dt}=\frac{1}{t}$ $\frac{dy}{dt}=2t$ $\frac{dy}{dx}=\frac{{dy}/{dt}}{{dx}/{dt}}=\frac{2t}{1/t}=2t^{2}$ Let $m$ be the slope of the tangent line to the given curve. $m=\frac{dy}{dx}|_{t=1}=2t^{2}|_{t=1}$ $=2\times(1)^{2}$ Hence, $m=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.