Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - Review - Exercises - Page 710: 39

Answer

$\frac{\sqrt {1+\pi^2}}{\pi}-\frac{\sqrt {1+4\pi^2}}{2\pi}+ln[\frac{2\pi\sqrt {1+4\pi^2}}{\pi+\sqrt {1+\pi^2}}]$

Work Step by Step

$r=\frac{1}{\theta}$ ; $\pi\leq \theta \leq 2 \pi$ $r'=-\frac{1}{\theta^{2}}$ ; $\pi\leq \theta \leq 2 \pi$ Length of the curve is given as: $L=\int_{\pi}^{2 \pi}\sqrt {(\frac{1}{\theta})^2+(-\frac{1}{\theta^{2}})^2} dt$ $=\int_{\pi}^{2 \pi}\sqrt {\frac{1}{\theta^2}+\frac{1}{\theta^4}} dt$ $=\frac{\sqrt {1+\pi^2}}{\pi}-\frac{\sqrt {1+4\pi^2}}{2\pi}+ln[\frac{2\pi\sqrt {1+4\pi^2}}{\pi+\sqrt {1+\pi^2}}]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.