Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.1 - Rates of Change and Tangents to Curves - Exercises 2.1 - Page 46: 3

Answer

a.)$\frac{-4}{\pi}$ b.)$\frac{-3\sqrt 3}{\pi}$

Work Step by Step

The definition of average rate of change is $\frac{f(x2) - f(x1)}{x2-x1}$. a.) h(t) = cot t interval = [$\frac{\pi}{4}$, $\frac{3\pi}{4}$] $\frac{h(\frac{3\pi}{4}) - h(\frac{\pi}{4})}{\frac{3\pi}{4}-\frac{\pi}{4}}$. h($\frac{3\pi}{4}$) =cot($\frac{3\pi}{4}$) = -1 h($\frac{\pi}{4}$) =cot($\frac{\pi}{4}$) = 1 $\frac{-1 - 1}{\frac{3\pi}{4}-\frac{\pi}{4}}$. = $\frac{-2}{\frac{\pi}{2}}$ =$\frac{-4}{\pi}$ b.) h(t) = cot t interval = [$\frac{\pi}{6}$, $\frac{\pi}{2}$] $\frac{h(\frac{\pi}{2}) - h(\frac{\pi}{6})}{\frac{\pi}{2}-\frac{\pi}{6}}$. h($\frac{\pi}{6}$) =cot($\frac{\pi}{6}$) = $\sqrt 3$ h($\frac{\pi}{2}$) =cot($\frac{\pi}{2}$) = 0 $\frac{0 - \sqrt 3}{\frac{\pi}{2}-\frac{\pi}{6}}$. = $\frac{-\sqrt 3}{\frac{\pi}{3}}$ =$\frac{-3\sqrt 3}{\pi}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.