University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.5 - Continuity - Exercises - Page 95: 45

Answer

For $f(x)$ to be continuous at every $x$, $a=-2$ or $a=3$.

Work Step by Step

$f(x)=a^2x-2a$ for $x\ge2$ and $f(x)=12$ for $x\lt2$ For $f(x)$ to be continuous at every $x$, $f(x)$ must be continuous at every point on $(-\infty,\infty)$ We would examine 3 intervals: - For all $x\in(-\infty,2)$, $f(x)=12$, and $$\lim_{x\to c}12=12=f(c)$$ So $f(x)$ is continuous on $(-\infty,2)$ - For all $x\in(2,\infty)$, $f(x)=a^2x-2a$, and $$\lim_{x\to c}a^2x-2a=a^2c-2a=f(c)$$ So $f(x)$ is continuous on $(2,\infty)$ - For $x=2$ Here $f(x)=a^2x-2a$, so $f(2)=a^2\times2-2a=2a^2-2a$. However, as $x\to2^-$, $f(x)=12$, so $$\lim_{x\to2^-}f(x)=\lim_{x\to2^-}12=12$$ At the same time, as $x\to2^+$, $f(x)=a^2x-2a$, so $$\lim_{x\to2^+}f(x)=\lim_{x\to2^+}(a^2x-2a)=2a^2-2a=f(2)$$ For $f(x)$ to be continuous at $x=2$, $\lim_{x\to2}f(x)$ must exist, which requires that $$\lim_{x\to2^+}f(x)=\lim_{x\to2^-}f(x)$$ $$2a^2-2a=12$$ $$a^2-a-6=0$$ $$(a+2)(a-3)=0$$ $$a=-2\hspace{1cm}\text{or}\hspace{1cm}a=3$$ Since $\lim_{x\to2^+}f(x)=f(2)$ as shown above, $\lim_{x\to2}f(x)=f(2)$ is already satisfied. Therefore, for $f(x)$ to be continuous at every $x$, $a=-2$ or $a=3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.