University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.5 - Continuity - Exercises - Page 95: 47

Answer

For $f(x)$ to be continuous at every $x$, $a$ and $b$ must have these values: $a=2.5$ and $b=-0.5$

Work Step by Step

- For $x\lt-1$: $\lim_{x\to c}f(x)=\lim_{x\to c}-2=-2=f(c)$ - For $-1\lt x\lt1$: $\lim_{x\to c}f(x)=\lim_{x\to c}(ax-b)=ac-b=f(c)$ - For $x\gt1$: $\lim_{x\to c}f(x)=\lim_{x\to c}3=3=f(c)$ So $f(x)$ is already continuous on $(-\infty,-1)\cup(-1,1)\cup(1,\infty)$. We only need to examine continuities at $x=-1$ and $x=1$. 1) $x=-1$ Here $f(x)=-2$, so $f(-1)=-2$ For $f(x)$ to be continuous at $x=-1$, $$\lim_{x\to-1}f(x)=f(-1)$$ $$\lim_{x\to-1^-}f(x)=\lim_{x\to-1^+}f(x)=f(-1)$$ $$\lim_{x\to-1^-}(-2)=\lim_{x\to-1^+}(ax-b)=-2$$ $$-2=a(-1)-b=-2$$ $$-a-b=-2$$ $$a+b=2\hspace{1cm}(1)$$ 2) $x=1$ Here $f(x)=3$, so $f(1)=3$ For $f(x)$ to be continuous at $x=1$, $$\lim_{x\to1}f(x)=f(1)$$ $$\lim_{x\to1^-}f(x)=\lim_{x\to1^+}f(x)=f(1)$$ $$\lim_{x\to1^-}(ax-b)=\lim_{x\to1^+}3=3$$ $$a\times1-b=3=3$$ $$a-b=3\hspace{1cm}(2)$$ Combining $(1)$ and $(2)$, we have 2 equations with 2 variables. Solving them, we come up with the following result: $a=2.5$ and $b=-0.5$ In conclusion, for $f(x)$ to be continuous at every $x$, $a$ and $b$ must have these values: $a=2.5$ and $b=-0.5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.