Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 2 - First Order Differential Equations - 2.1 Linear Equations; Method of Integrating Factors - Problems - Page 39: 2

Answer

\begin{equation} y=\frac{t^{3}}{3} e^{2 t}+c e^{2 t} \end{equation}

Work Step by Step

finding the integrating factor \begin{equation} \begin{array}{l} y^{\prime}-2 y=t^{2} e^{2 t} \\ \mu(t)=e^{\int p(t) d t} \\ p(t)=-2 \\ \mu(t)=e^{\int-2 d t} \\ \mu(t)=e^{-2 t} \end{array} \end{equation} multiplying the integrating factor on both sides \begin{equation} \begin{array}{c} e^{-2 t}\left(y^{\prime}-2 y\right)=e^{-2 t} \cdot t^{2} e^{2 t} \\ e^{-2 t} y^{\prime}-2 e^{-2 t} y=t^{2} e^{2 t-2 t} \\ \left(e^{-2 t} y\right)^{\prime}=t^{2} \end{array} \end{equation} integrating on both sides \begin{equation} \begin{array}{c} \int\left(e^{-2 t} y\right)^{\prime} d t=\int t^{2} d t \\ e^{-2 t} y=\frac{t^{3}}{3}+c \end{array} \end{equation} here, c is the integration constant. The answer is \begin{equation} y=\frac{t^{3}}{3} e^{2 t}+c e^{2 t} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.