Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 2 - First Order Differential Equations - 2.1 Linear Equations; Method of Integrating Factors - Problems - Page 39: 3

Answer

\begin{equation} y=\ c e^{-t}+1+ \frac{t^{2}}{2} e^{-t} \end{equation}

Work Step by Step

\begin{equation} y^{\prime}+y=t e^{-t}+1 \end{equation} we solve this equation by the integrating factor method, finding the integrating factor- \begin{equation} \begin{array}{l} p(t)=1 \\ \mu(t)=e^{\int p(t) d t} \\ \mu(t)=e^{\int 1 d t} \\ \mu(t)=e^{t} \end{array} \end{equation} multiplying integrating factor on both sides \begin{equation} \begin{array}{l} e^{t}\left(y^{\prime}+y\right)=e^{t}\left(t e^{-t}+1\right) \\ e^{t} y^{\prime}+e^{t} y=t e^{t-t}+e^{t} \\ \left(e^{t} y\right)^{\prime}=t+e^{t} \end{array} \end{equation} integrating on both sides \begin{equation} \int\left(e^{t} \cdot y\right)^{\prime}=\int\left(t+e^{t}\right) d t \end{equation} here c is the integration constant \begin{equation} \begin{aligned} e^{t} y &=\frac{t^{2}}{2}+e^{t}+c \\ y &=\frac{t^{2}}{2} e^{-t}+1+c e^{-t} \end{aligned} \end{equation} the above line is the answer
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.