Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 2 - First Order Differential Equations - 2.1 Linear Equations; Method of Integrating Factors - Problems - Page 39: 4

Answer

$y=\frac{3}{2} \sin 2 t+\frac{3}{4} \frac{\cos 2 t}{t}+\frac{c}{t}$

Work Step by Step

\begin{equation} \begin{array}{l} y^{\prime}+\left(\frac{1}{t}\right) y=3 \cos 2 t, t>0 \\ \text { We solve this by integrating factor method}\\ \text { we first find the integrating factor}\\ \end{array} \end{equation} $p(t)=1 / t$ $\mu(t)=e^{\int p(t) d t}$ $\mu(t)=e^{\int 1 / t} d t$ $\mu(t)=e^{\ln t}$ $\mu(t)=t$ Multiplying both sides by $\mu(t)$ $t\left(y^{\prime}+\left(\frac{1}{t}\right) y\right)=t \cdot 3 \cos 2 t$ $t y^{\prime}+y \quad=\quad t \cdot 3 \cos 2 t$ Simplifying Left hand side. $(t y)^{\prime}=t \cdot 3 \cos 2 t$ integrating on both sides $\int(t y)^{\prime} d t=3 \int t(\cos 2 t) d t$ $t y=3 \int t \cdot \cos 2 t d t$ integrating the right hand side using integrating by parts $\int t \cos 2 t d t=t \frac{\sin 2 t}{2}-\int \frac{\sin 2 t}{2} dt$ $=t \cdot \frac{\sin 2 t}{2}-\frac{1}{2}\left(-\frac{\cos 2 t)}{2}\right)$ substituting the right hand side $t y=3\left[\left(\frac{t}{2}\right) \cdot \sin 2 t+\left({1/4}\right) \cdot \cos 2 t\right]$ further simplifying by dividing both sides by t, here c is the integrating factor \begin{equation} \begin{array}{l} t y=\frac{3}{2} \cdot t \cdot \sin 2 t+\frac{1}{4} \cdot \cos 2 t+c \\ y=\frac{3}{2} \sin 2 t+\frac{3}{4} \frac{\cos 2 t}{t}+\frac{c}{t} \end{array} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.