Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 1 - Vectors - 1.3 Lines and Planes - Exercises 1.3 - Page 44: 10

Answer

Vector form:$\begin{bmatrix}{x \\y \\z}\end{bmatrix} = \begin{bmatrix}{6 \\-4 \\-3}\end{bmatrix}+s\begin{bmatrix}{0 \\1\\1}\end{bmatrix}+t\begin{bmatrix}{-1 \\1\\1}\end{bmatrix}$ Parametric form: $x=6-t, y=-4+s+t,z=-3+s+t$

Work Step by Step

The vector form of a plane is: $x=p+su+tv$ This implies, $\begin{bmatrix}{x \\y \\z}\end{bmatrix} = \begin{bmatrix}{6 \\-4 \\-3}\end{bmatrix}+s\begin{bmatrix}{0 \\1\\1}\end{bmatrix}+t\begin{bmatrix}{-1 \\1\\1}\end{bmatrix}$ Parametric equations of a plane are defined as such equations which correspond to the components of the vector. Thus, the parametric form of the equation of a plane is: $x=6-t, y=-4+s+t,z=-3+s+t$ Hence, the vector form is:$\begin{bmatrix}{x \\y \\z}\end{bmatrix} = \begin{bmatrix}{6 \\-4 \\-3}\end{bmatrix}+s\begin{bmatrix}{0 \\1\\1}\end{bmatrix}+t\begin{bmatrix}{-1 \\1\\1}\end{bmatrix}$ The parametric form is: $x=6-t, y=-4+s+t,z=-3+s+t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.