Answer
Vector form:$\begin{bmatrix}{x \\y}\end{bmatrix} = \begin{bmatrix}{-4 \\4}\end{bmatrix}+t\begin{bmatrix}{1 \\1}\end{bmatrix}$
Parametric form: $x=-4+t, y=4+t$
Work Step by Step
The vector form of a line is: $x=p+td$
This implies: $\begin{bmatrix}{x \\y}\end{bmatrix} = \begin{bmatrix}{-4 \\4}\end{bmatrix}+t\begin{bmatrix}{1 \\1}\end{bmatrix}$
And
Parametric equations of a line are defined as such equations which are correspond to the components of the vector.
Thus, the parametric form of the equation of a line is:
$x=-4+t, y=4+t$
Hence, the vector form is:$\begin{bmatrix}{x \\y}\end{bmatrix} = \begin{bmatrix}{-4 \\4}\end{bmatrix}+t\begin{bmatrix}{1 \\1}\end{bmatrix}$
The parametric form is: $x=-4+t, y=4+t$